Crystal structure of $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{2}-\mathrm{H}\right)_{2}\left(\mu_{3}-\mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$

A.S. Batsanov, V.G. Andrianov, Yu.T. Struchkov ${ }^{\star}$, A.A. Koridze, O.A. Kizas and N.E. Kolobova

Nesmeyanov Institute of Organoelement Compounds, Vavilov St. 28, 117813, Moscow (U.S.S.R.)
(Received January 20th, 1987)

Abstract

An X-ray diffraction study of $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{2}-\mathrm{H}\right)_{2}\left(\mu_{3}-\mathrm{C}=\widehat{\mathrm{CCH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ at $-120^{\circ} \mathrm{C}$ ($R=0.039$ for 2227 reflections) has revealed a $\mu_{3}-\eta^{2}$-coordination of the methylenecyclobutane ligand, which bridges one $\mathrm{Os}-\mathrm{Os}$ bond via a methylidene carbon and is linked to the third Os atom by the $\mathrm{C}=\mathrm{C}$ bond.

Complex I, $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{2}-\mathrm{H}\right)_{2}\left(\mu_{3}-\mathrm{C}=\overparen{\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}}\right)$, was obtained by thermal reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with methylenecyclobutane [1]. The protonation of I yields the cationic complex $\left[\mathrm{Os}_{3} \mathrm{H}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C}=\mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right]^{+}$(II). In connection with structural investigation of II and other complexes of the $\left[\mathrm{Os}_{3} \mathrm{H}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{C}=\mathrm{CR}_{2}\right)\right]^{+}$type and their supposed fluxional behaviour in solutions we carried out an X-ray single crystal study of I .

Complex I (see Fig. 1 and Table 1) is a 48 -electron (i.e. obeys the EAN rule) triangulo-cluster, structurally similar to $\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{C}=\mathrm{CH}_{2}\right)$ (III) which has been studied previously [2]. All CO groups are terminal and linear. The methylenecyclobutane ligand is σ-bonded to $\mathrm{Os}(1)$ and $\mathrm{Os}(2)$ via $\mathrm{C}(10)$ and η^{2}-coordinated to $\operatorname{Os}(3)$ by the olefinic $\mathrm{C}(10)=\mathrm{C}(11)$ bond. The $\mathrm{Os}(3) \mathrm{C}(10) \mathrm{C}(11)$ plane is normal to the mean plane of the olefinic moiety $C(14) C(12) C(11) C(10)$, but the $\operatorname{Os}(3)-\mathrm{C}(10)$ and $\mathrm{Os}(3)-\mathrm{C}(11)$ distances of 2.21 and $2.40 \AA$ are very different, this feature is similar to that observed in III (2.17 and $2.35 \AA$). The $\mathrm{C}(10)=\mathrm{C}(11)$ bond is tilted away from the $\operatorname{Os}(1) \operatorname{Os}(2) \mathrm{C}(10)$ plane by 19° towards $\mathrm{Os}(3)$, while the $\mathrm{C}(11) \mathrm{C}(12) \mathrm{C}(14)$ plane is inclined towards this bond by 28°, on the opposite side. In the 4 -membered carbocycle, the $\mathrm{C}(13)$ atom is displaced from the plane of the other three atoms by $0.35 \AA$ (on the side opposite to Os(3)).

Hydride ligands in I, as well as in III, were not located in electron density maps. Nevertheless, there is strong evidence that they are μ_{2}-bridging across the $\mathrm{Os}(1)-\mathrm{Os}(2)$ and $\mathrm{Os}(2)-\mathrm{Os}(3)$ bonds. Indeed, hydride bridges are known to exert metal-metal bond elongation, and in I the $\operatorname{Os}(1)-\mathrm{Os}(2)$ and $\operatorname{Os}(2)-\mathrm{Os}(3)$ bond lengths of 2.894 and 2.911 are ca. $0.1 \AA$ longer than the $\operatorname{Os}(1)-\operatorname{Oss}(3)$ bond length of $2.783 \AA$ (in III, 2.88, 2.92 and $2.80 \AA$). Furthermore, Os-Os-CO cis-angles,
Table 1
Bond distances (\dot{A}) and angles $\left({ }^{\circ}\right.$) in the structure of 1

O(5)-C(5)	1.14(2)
O(6)-C(6)	1.13(2)
$\mathrm{O}(7)-\mathrm{C}(7)$	1.15(2)
O(8)-C(8)	1.15 (2)
O(9)-C(9)	1.16(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.38(2)
C(11)-C(12)	1.51(2)
C(11)-C(14)	1.52(2)
($(12)-$ C(13)	1.57(3)
((13)-C(14)	1.56(3)
($(8)-\mathrm{Os}(3) \mathrm{C}(9)$	92.9(7)
(8 ($)-\mathrm{Os}(3) \mathrm{Q}$	$95.8(7)$
C(9) $\mathrm{Os}(3)-\mathrm{Q}$	i04.9(7)
Os(1)-C(1)-O(1)	:78(1)
Osi 1 - $-(2)-\mathrm{O}(2)$	$178(1)$
$\mathrm{Os}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$\therefore 71(2)$
OS(2) - $C(4)-O(4)$	178(1)
Os(2)-C(5)-O(5)	175(1)
$0 \times(2) \cdots(6)-O(6)$	178(1)
Os(3) C(7)-O(7)	176(1)
Ox(3) C(8)-O(8)	177(1)
$\mathrm{Osf3}) \mathrm{C}(9) \mathrm{O}(9)$	178(1)
Os $11-\mathrm{Cl} 10) \mathrm{Os}(2)$	88.6 (5)
Os(1)-C(10) C(11)	:35(1)
O(2) ($\mathrm{Cl}_{(10)-\mathrm{C}(11)}$	130(1)
(110)-(11) C(12)	$126(1)$
(10)-C(11) (114)	129(1)
(112) C(1) - (14)	$92(1)$
(11) ((12) (113)	$88(1)$
(112 (1) (13)-C(14)	$89(1)$
(11) ($(14)-\mathrm{Cl} 13)$	$88(1)$

Fig. 1. Molecular structure of I (hydrogen atoms omitted).
Table 2
Atomic coordinates ($\times 10^{4}$, for $\mathrm{Os} \times 10^{5}$) and B_{eq} for I

Atom	x	y	z	$B_{\text {eq }}(\AA)$
$\mathrm{Os}(1)$	14566(6)	24147(4)	8323(3)	1.31(2)
$\mathrm{Os}(2)$	8290(7)	24796(4)	25115(3)	1.33(2)
$\mathrm{Os}(3)$	- $15199(6)$	18115(4)	13425(3)	$1.30(1)$
$\mathrm{O}(1)$	3204(14)	379(9)	392(7)	3.0(3)
$\mathrm{O}(2)$	114(13)	2822(10)	-834(6)	$2.7(3)$
$\mathrm{O}(3)$	4153(14)	3958(11)	597(8)	3.8(3)
$\mathrm{O}(4)$	-1437(14)	3193(12)	3791(7)	3.7(4)
$\mathrm{O}(5)$	3112(14)	4256(10)	2893(7)	3.4(3)
$\mathrm{O}(6)$	2486(14)	798(10)	3553(7)	3.2(3)
$\mathrm{O}(7)$	-665(14)	-441(10)	953(7)	3.4(3)
$\mathrm{O}(8)$	-3225(14)	2067(11)	- 245(7)	3.3(3)
$\mathrm{O}(9)$	-4618(14)	1622(13)	2238(8)	4.6(4)
C(1)	2564(17)	1114(12)	536(8)	1.6(3)
C(2)	621(18)	2684(11)	-208(10)	2.1 (4)
C(3)	3213(19)	3339(16)	730(11)	3.0(5)
C(4)	-611(18)	2920(14)	3302(9)	$2.3(4)$
C(5)	2303(17)	3559(13)	2756(8)	$1.8(4)$
C(6)	1887(17)	1423(12)	3186(9)	1.9(4)
C(7)	-1013(17)	399(12)	1128(8)	1.7(4)
C(8)	- 2552(17)	1954(13)	348(9)	2.1(4)
C(9)	-3453(18)	1707(14)	1892(10)	2.6 (4)
C(10)	-94(17)	3246(12)	1513(8)	1.8(4)
$\mathrm{C}(11)$	-1564(19)	3692(12)	1388(9)	2.1(4)
C(12)	- 2036 (19)	4367(13)	686(10)	2.4(4)
C(13)	- 2723(29)	5179(14)	1291(10)	2.6 (5)
C(14)	-2572(21)	4330(15)	1952(11)	$2.9(4)$

involving the $\mathrm{Os}(1)-\mathrm{Os}(2)$ and $\mathrm{Os}(2)-\mathrm{Os}(3)$ bonds, are wider than those involving the $\mathrm{Os}(1)$-Os(3) bond (average values 107 and 96°) owing to steric repulsion by $\mu_{2}-\mathrm{H}$ ligands. The signals of hydride protons in the ${ }^{1} \mathrm{H}$ NMR spectrum of I (two doublets with $\delta-18.71$ and -21.16 ppm) are remarkably non-equivalent [1], which is consistent with a non-symmetric arrangement of hydrides relative to the methylenecyclohutane ligand.

Experimental

X-Ray diffraction intensities were measured with a Syntex P_{2}, four circle autodiffractometer at $-120^{\circ} \mathrm{C}$, using graphite monochromated Mo- K_{a} radiation. All calculations were carried out with an Eclipse S/200 computer using INEXTL programs [3]. Crystal data of I: monoclinic, space group $P 2_{1} / n, a 8.46712$) b $12.765(3), c 16.889(4) \AA, \beta 90.78(2)^{\circ}, V 1825.1(7) \mathrm{A}^{\circ}, ~ Z=4, \mathrm{C}_{14} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{O}_{3} . d_{\text {ath }}$ $3.24 \mathrm{~g} \mathrm{~cm}^{-3} \cdot \mu\left(\mathrm{Mo}-K_{\alpha}\right) 221.2 \mathrm{~cm}^{-1}$. Least squares anisotropic refinemem of all non-hydrogen atoms converged at $R=0.039 . R=0.048$ for 2227 unique absorption corrected (according to the real shape of the crystal [4]) reflections with $/ \geqslant 2 \sigma$ and $2 \theta \leqslant 48^{\circ}$. The weighting scheme $W^{-1}=\sigma_{F}^{2}+\left(0.025 F_{\text {menes }}\right)^{2}$ was used. Atomic coordinates and $B_{\mathrm{v} 4}=1 / 3 \sum_{i /} B_{i}, a_{i} a_{i}\left(a_{i} a_{j}\right)$ are listed in Table 2.

References

1 A.A. Koridee, O.A. Kizas, N.E. Kolobuva. P.V. Petrovskii and F.I. Fedin, J. Organomet, Chem., 265 (1984) C33.

2 A.J. Deeming and M. Underhill. J. Chem. Soc. Dalton Trans. (1974) 1415.
3 R.G. Gerr, A.I. Yanovskii and Yu.T. Struchkov, Kristatlografiya, 28 (1983) 1029.
4 R.G. Gerr M.Yu. Antipin, N.G. Fumanova and Yu.T. Struchkov, Kristallografiya, 24 (1479) 951

